
Week 8 - Monday

 What did we talk about last time?
 Finished Tower of Hanoi
 Merge sort

 Given an N x N chess board, where N ≥ 4 it is possible to place
N queens on the board so that none of them are able to attack
each other in a given move

 Write a method that, given a value of N, will return the total
number of ways that the N queens can be placed

 We will use recursion to place queens on the board, one row at
a time

 To save typing, we will use a loop to place the queen at each
different column within the row and then recurse
 Egad! A loop inside recursion!
 It happens.

 If we have placed queens on all the rows, we return 1 (a
successful placement)

 We sum up all the successful placements that our recursive
children make

 We can never have more than one queen in a
given row

 Instead of using a 2D array, we can just use a
1D array

 The array will record which column a queen
on a given row uses

 Thus, it will be an array of int values
 The array for the placement to the right

would look like:
{3, 6, 2, 7, 1, 4, 0, 5}

 Base case: (row = 8)
 You have placed queens on rows 0-7
 Return 1 (a successful placement)

 Recursive case: (row < 8)
 Keep a sum of the successful placements made by placing in future

rows, initially 0
 Try to place a queen on columns 0-7
▪ For each successful column placement, recursively try to place queens on the

next row and add those successful placements to your sum

 Return sum

 As you place a queen on a row, you'll need a method to check if it's safe
 If it isn't safe, there's no reason to recurse

 We have set up our program so that no queens can ever be on the same row
 We still have to check previous rows to see if they have the same column or

diagonal
 Checking the column simply means seeing if the number inside the row is the

same
 Checking the diagonal requires more thought
 Use a method with the following signature, where board is the 1D array of
int values giving column locations and row is the row you're currently adding
to

public static boolean isSafe(int[] board, int row)

 You only need to look at the locations before row

 At the end of COMP 1600, we briefly mentioned general file
I/O

 Think of a file as a stream of bytes
 It's possible to read data from and write data to files
 Files are great because they exist after the program is done

executing
 Reading from and writing to text files is very similar to reading

and writing to the command line (using Scanner and
System.out)

 First, we're going to talk about text files
 All files are sequences of bytes stored in binary, but in text files,

those bytes form human-readable text like words and numbers
 Unlike files storing data in binary, working with text files is similar

to the command-line I/O we've been doing since before COMP
2000

 Examples of text files:
 Source code for most programming languages (.c, .java, .py files,

etc.)
 Plain text files (often with a .txt extension)
 Many configuration and log files

 File extensions have no real meaning
 Extensions are part of the name of a file
 A file filled with binary data could end in .txt
 An audio file could end with .jpg
 The OS uses extensions to guess about which program should

open a file
 Changing the extension changes nothing about a file
 Caveat: I've heard that changing an image or audio file extension in

macOS will sometimes change the format of the file
 In Windows, you should never hide extensions, since doing so

allows the OS to lie to you about the file's real name

 Reading from a text file is straightforward
 We use Scanner, just like reading from the command line
 We just have to create a new File object that gives the file

path we want to read from

 This code will read from some file called input.txt, as if
someone were typing its contents into the command line

Scanner in = new Scanner(new File("input.txt"));

 Recall that we can read correctly formatted text with a Scanner using
the following methods
 nextInt() Reads an int value
 nextDouble() Reads a double value
 next() Reads a white-space delimited String
 nextLine() Reads a String up to the next newline (which can

cause problems if there's a newline left over from
previous reads)

 These methods are usually what you need to get the job done, but there
are also nextBoolean(), nextByte(), nextFloat(),
nextLong(), and nextShort() methods

 Note that all the integer reading methods have a second version that
takes a base so that you can read values in bases 2-36

 When a Scanner is reading from the keyboard, it has no idea what the
user will type next

 However, when a Scanner is reading from a file, it can examine the text
it hasn't read yet

 A number of methods are available to tell you if there's some properly
formatted data just ahead waiting to be read:
 hasNextInt() There's an intwaiting to be read
 hasNextDouble() There's a doublewaiting to be read
 hasNext() There's a Stringwaiting to be read
 hasNextLine() There's a line waiting to be read

 Such methods are often used in a while loop to keep reading data until
the end of the file is reached

 Writing files
 Examples
 Error handling

 Start Project 3
 Form teams immediately!

 Keep reading Chapter 20

	COMP 2000
	Last time
	Questions?
	Project 3
	N-Queens Example
	N-Queens
	Problem solving approach
	Key observations
	N-Queens algorithm (recursive)
	Helper method
	Files
	Files in Java
	Text files
	File extensions
	Reading
	Scanner methods
	New Scanner powers
	Upcoming
	Next time…
	Reminders

