Week 8 - Monday

COMP 2000




= What did we talk about last time?
= Finished Tower of Hanoi
= Merge sort



Questions?




Project 3




N-Queens Example




= Given an N x N chess board, where N = 4 it is possible to place
N queens on the board so that none of them are able to attack
each otherin a given move

= Write a method that, given a value of N, will return the total
number of ways that the N queens can be placed

o



= We will use recursion to place queens on the board, one row at
a time

= To save typing, we will use a loop to place the queen at each
different column within the row and then recurse

= Egad! A loop inside recursion!

= |t happens.

= |f we have placed queens on all the rows, we return 1 (a
successful placement)

= We sum up all the successful placements that our recursive
children make



= We can never have more than one queenin a
given row

= Instead of using a 2D array, we can just use a
1D array

= The array will record which column a queen
on a given row uses

= Thus, it will be an array of int values

= The array for the placement to the right

would look like:
{31 6/ 2/ 7/ 1/ 4/ OI 5}



= Base case: (row = 8)
= You have placed queens on rows o0-7

= Return 1 (a successful placement)
= Recursive case: (row < 8)

= Keep a sum of the successful placements made by placing in future
rows, initially o

= Try to place a queen on columns o-7

For each successful column placement, recursively try to place queens on the
next row and add those successful placements to your sum

= Return sum



= Asyou place a queen on arow, you'll need a method to check if it's safe
= |fitisn't safe, there's no reason to recurse

= We have set up our program so that no queens can ever be on the same row

= We still have to check previous rows to see if they have the same column or
diagonal

= Checking the column simply means seeing if the number inside the row is the
same

= Checking the diagonal requires more thought

= Use a method with the following signature, where board is the 1D array of
int values giving column locations and row is the row you're currently adding
to

public static boolean isSafe(int[] board, int row)

= You only need to look at the locations before row






At the end of COMP 1600, we briefly mentioned general file
/O

Think of a file as a stream of bytes

It's possible to read data from and write data to files

Files are great because they exist after the program is done
executing

Reading from and writing to text files is very similar to reading
and writing to the command line (using Scanner and
System.out)



First, we're going to talk about text files

All files are sequences of bytes stored in binary, but in text files,
those bytes form human-readable text like words and numbers
Unlike files storing data in blnary, working with text files is similar

to the command-line I/O we've been doing since before COMP
2000

Examples of text files:

= Source code for most programming languages (. ¢, . java, .py files,
etc.)

= Plain text files (often with a . txt extension)
= Many configuration and log files




File extensions have no real meaning

Extensions are part of the name of a file

A file filled with binary data could end in . txt

An audio file could end with . jpg

The OS uses extensions to guess about which program should

open a file

Changing the extension changes nothing about a file

= Caveat: I've heard that changing an image or audio file extension in
macOS will sometimes change the format of the file

In Windows, you should never hide extensions, since doing so

allows the OS to lie to you about the file's real name




= Reading from a text file is straightforward
= We use Scanner, just like reading from the command line
= We just have to create a new File object that gives the file

path we want to read from

Scanner in = new Scanner (new File("input.txt"));

= This code will read from some file called input. txt, as if
someone were typing its contents into the command line



= Recall that we can read correctly formatted text with a Scanner using
the following methods

nextInt ()
nextDouble ()
next ()
nextLine ()

Reads an int value
Reads a double value
Reads a white-space delimited String

Reads a String up to the next newline (which can
cause problems if there's a newline left over from
previous reads)

= These methods are usually what you need to get the job done, but there
are also nextBoolean (), nextByte (), nextFloat (),
nextLong (), and nextShort () methods

= Note that all the integer reading methods have a second version that
takes a base so that you can read values in bases 2-36



When a Scanner is reading from the keyboard, it has no idea what the

user will type next
However, when a Scanner is reading from a file, it can examine the text

it hasn't read yet
A number of methods are available to tell you if there's some properly

formatted data just ahead waiting to be read:

= hasNextInt () There's an int waiting to be read

= hasNextDouble () There's a double waiting to be read
= hasNext () There's a String waiting to be read
= hasNextLine () There's a line waiting to be read

Such methods are often used in awhile loop to keep reading data until
the end of the file is reached



Upcoming




= Writing files
= Examples
= Error handling



= Start Project 3

= Form teams immediately!
= Keep reading Chapter 20



	COMP 2000
	Last time
	Questions?
	Project 3
	N-Queens Example
	N-Queens
	Problem solving approach
	Key observations
	N-Queens algorithm (recursive)
	Helper method
	Files
	Files in Java
	Text files
	File extensions
	Reading
	Scanner methods
	New Scanner powers
	Upcoming
	Next time…
	Reminders

