
Week 8 - Monday

 What did we talk about last time?
 Finished Tower of Hanoi
 Merge sort

 Given an N x N chess board, where N ≥ 4 it is possible to place
N queens on the board so that none of them are able to attack
each other in a given move

 Write a method that, given a value of N, will return the total
number of ways that the N queens can be placed

 We will use recursion to place queens on the board, one row at
a time

 To save typing, we will use a loop to place the queen at each
different column within the row and then recurse
 Egad! A loop inside recursion!
 It happens.

 If we have placed queens on all the rows, we return 1 (a
successful placement)

 We sum up all the successful placements that our recursive
children make

 We can never have more than one queen in a
given row

 Instead of using a 2D array, we can just use a
1D array

 The array will record which column a queen
on a given row uses

 Thus, it will be an array of int values
 The array for the placement to the right

would look like:
{3, 6, 2, 7, 1, 4, 0, 5}

 Base case: (row = 8)
 You have placed queens on rows 0-7
 Return 1 (a successful placement)

 Recursive case: (row < 8)
 Keep a sum of the successful placements made by placing in future

rows, initially 0
 Try to place a queen on columns 0-7
▪ For each successful column placement, recursively try to place queens on the

next row and add those successful placements to your sum

 Return sum

 As you place a queen on a row, you'll need a method to check if it's safe
 If it isn't safe, there's no reason to recurse

 We have set up our program so that no queens can ever be on the same row
 We still have to check previous rows to see if they have the same column or

diagonal
 Checking the column simply means seeing if the number inside the row is the

same
 Checking the diagonal requires more thought
 Use a method with the following signature, where board is the 1D array of
int values giving column locations and row is the row you're currently adding
to

public static boolean isSafe(int[] board, int row)

 You only need to look at the locations before row

 At the end of COMP 1600, we briefly mentioned general file
I/O

 Think of a file as a stream of bytes
 It's possible to read data from and write data to files
 Files are great because they exist after the program is done

executing
 Reading from and writing to text files is very similar to reading

and writing to the command line (using Scanner and
System.out)

 First, we're going to talk about text files
 All files are sequences of bytes stored in binary, but in text files,

those bytes form human-readable text like words and numbers
 Unlike files storing data in binary, working with text files is similar

to the command-line I/O we've been doing since before COMP
2000

 Examples of text files:
 Source code for most programming languages (.c, .java, .py files,

etc.)
 Plain text files (often with a .txt extension)
 Many configuration and log files

 File extensions have no real meaning
 Extensions are part of the name of a file
 A file filled with binary data could end in .txt
 An audio file could end with .jpg
 The OS uses extensions to guess about which program should

open a file
 Changing the extension changes nothing about a file
 Caveat: I've heard that changing an image or audio file extension in

macOS will sometimes change the format of the file
 In Windows, you should never hide extensions, since doing so

allows the OS to lie to you about the file's real name

 Reading from a text file is straightforward
 We use Scanner, just like reading from the command line
 We just have to create a new File object that gives the file

path we want to read from

 This code will read from some file called input.txt, as if
someone were typing its contents into the command line

Scanner in = new Scanner(new File("input.txt"));

 Recall that we can read correctly formatted text with a Scanner using
the following methods
 nextInt() Reads an int value
 nextDouble() Reads a double value
 next() Reads a white-space delimited String
 nextLine() Reads a String up to the next newline (which can

cause problems if there's a newline left over from
previous reads)

 These methods are usually what you need to get the job done, but there
are also nextBoolean(), nextByte(), nextFloat(),
nextLong(), and nextShort() methods

 Note that all the integer reading methods have a second version that
takes a base so that you can read values in bases 2-36

 When a Scanner is reading from the keyboard, it has no idea what the
user will type next

 However, when a Scanner is reading from a file, it can examine the text
it hasn't read yet

 A number of methods are available to tell you if there's some properly
formatted data just ahead waiting to be read:
 hasNextInt() There's an intwaiting to be read
 hasNextDouble() There's a doublewaiting to be read
 hasNext() There's a Stringwaiting to be read
 hasNextLine() There's a line waiting to be read

 Such methods are often used in a while loop to keep reading data until
the end of the file is reached

 Writing files
 Examples
 Error handling

 Start Project 3
 Form teams immediately!

 Keep reading Chapter 20

	COMP 2000
	Last time
	Questions?
	Project 3
	N-Queens Example
	N-Queens
	Problem solving approach
	Key observations
	N-Queens algorithm (recursive)
	Helper method
	Files
	Files in Java
	Text files
	File extensions
	Reading
	Scanner methods
	New Scanner powers
	Upcoming
	Next time…
	Reminders

